

Beckman Coulter DXH系列培训 DXH500/520 结构操作维护故障篇 郑振寰

Beckman Coulter DXH系列培训 DXH500/520 结构操作维护故障篇

目录

- 1 DXH500/520 结构
- 2 DXH500/520 原理
- 3 DXH500/520 主要操作
- 4 DXH500/520 质量保证
- 5 DXH500/520 清洗程序
- 6 DXH500/520 更换调整程序
- 7 DXH500/520 故障排除

1 DXH500/520 结构 DXH500采用开放试管进样方式。 DXH520采用封闭试管进样方式。

DXH500/520是紧凑型五分群血液分析仪,CBC采用库尔特原理,DIFF采用光学计数方式。

整机仅使用三种试剂(稀释液、溶血剂、清洗剂)。 配有DXH500系列校准品和质控品。 法国Mythic 22 OEM而来,散点图经过反转处理。 硬件结构进行过优化,采用集装电磁阀和注射器。

DXH500/520采用全新的软件操作界面。 支持全血(静脉血和末梢血)及稀释血。 测试21项参数:WBC,RBC,HGB,HCT,MCV,MCH, MCHC,RDW,RDW-SD,PLT,MPV,LY%,LY#,MO%, MO#,NE%,NE#,E0%,E0#,BA%,BA#

- 触摸屏 电源开关 2 3 吸样针

- 4 样品门
- 5 前USB口

- 1 后USB口 2 以太网口
- 3 EIA-232 D接口
- 4 USB D口
- 电源连接器 5
- 稀释液接口 6
- 废液接口 7

୯୦୦୦୧୯ Beckman Coulter DXH系列培训 DXH500/520 结构操作维护故障篇 1 DXH500/520 结构

UGGG Beckman Coulter DXH系列培训 DXH500/520 结构操作维护故障篇 1 DXH500/520 结构

主菜单图标

诊断

注销

6

功能菜单图标

错误/警管	告指示
4	敬 <u>生</u> 言口
	错误
	质控错误
QC	质控超限
×.	XB超限
X,	XM超限
EQC	扩展质控超限

୯୦୦୦୧୯ DXH500/520 结构操作维护故障篇 1 DXH500/520 结构 Beckman Coulter DXH系列培训

标本

抗凝: K₂或K₃ EDTA.

全血采血量: 16.7 µ L

稀释血: 20 µ L全血+300 µ L稀释液,吸取180 µ L稀释 血标本。

交叉污染

测量范围及线性

全血项目	单位	测量范围	操作范围	线性范围r ²
WBC	x10 ³ cells/µL	0.20 to 100.00	0.00 to 150.00	r2 > 0.95
RBC	x10 ⁶ cells/µL	0.20 to 8.00	0.00 to 12.00	r2 > 0.95
HGB	g/dL	0.20 to 25.00	0.00 to 25.00	r2 > 0.95
HCT	%	0.0 to 85.0	0.0 to 85.0	N/A
MCV	fL	50.0 to 150.0	50.0 to 150.0	N/A
MCH	pg	0.0 to 99.9	0.0 to 99.9	N/A
MCHC	g/dL	0.0 to 99.9	0.0 to 99.9	N/A
RDW	%	10.0 to 40.0	0.0 to 70.0	N/A
RDW-SD	fL	15.0 to 150.0	0.0 to 220.0	N/A
PLT	x10 ³ cells/µL	7.0 to 2000.0	0.0 to 4000.0	r2 > 0.95
MPV	fL	5.00 to 25.00	0.00 to 25.00	N/A
LY	%	0.00 to 100.00	0.00 to 100.00	N/A
MO	%	0.00 to 100.00	0.00 to 100.00	N/A
NE	%	0.00 to 100.00	0.00 to 100.00	N/A
EO	%	0.00 to 100.00	0.00 to 100.00	N/A
BA	%	0.00 to 100.00	0.00 to 100.00	N/A
LY#	x10 ³ cells/µL	0.00 to 100.00	0.00 to 150.00	N/A
MO#	x10 ³ cells/µL	0.00 to 100.00	0.00 to 150.00	N/A
NE#	x10 ³ cells/µL	0.00 to 100.00	0.00 to 150.00	N/A
EO#	x10 ³ cells/µL	0.00 to 100.00	0.00 to 150.00	N/A
BA#	x10 ³ cells/µL	0.00 to 100.00	0.00 to 150.00	N/A

	-	
参数	单位	本底范围
WBC and Diff	x10 [°] cells/µL	≤ 0.20
RBC	x10 ^⁰ cells/µL	≤ 0.03
HGB	g/dL	≤0.10
PLT	x10 ^³ cells/µL	≤ 7.0

୳ଡ଼ଡ଼ଡ଼

➔ Beckman Coulter DXH系列培训 DXH500/520 结构操作维护故障篇 1 DXH500/520 结构

WBC及DIFF计数原理

同时提供HGB计数。

WBC池包含HGB比色计、WBC微孔及光学系统。 样品与溶血剂稀释液混匀后,直接进行HGB比色计数。 溶血后的标本通过微孔的同时叶经过光学系统,微孔 进行细胞体积测量,光学系统获取细胞的吸光度。根 据二者的数据绘制二维散点图,Y轴为体积,X轴为吸 光度。光源采用蓝色LED。

1 蓝色/淋巴
 2 绿色/单核
 3 红色/中性
 4 橙色/嗜酸
 5 白色/嗜碱
 6 蓝绿或灰色/
 非白细胞

DXH500/520支持手持条码阅读器输入信息。

UGGO

每日检查

主菜单点击 🔝 进入每日检查界面,继续点击 💽 并 点击 🕢 执行每日检查。

等候每日检查完成。

验证所有状态指示器是否显示通过并验证剩余的试剂 循环。如果剩余的试剂循环小于10,则背景为黄色。 如果没有剩余周期,则背景为红色。必要时更换试剂。

导出每日检查

,将每日检查数据导出到U盘中。

本底测试

🔝 - 💽 - 💽,完成后验证本底测试通过。

Beckman Coulter DXH系列培训 DXH500/520 结构操作维护故障篇 3 DXH500/520 主要操作

3.2 质控

运行质控

选择 🛃 以显示 "Sample Analysis - Patient Results 样品分析-患者结果"屏幕。 DXH520自动打 开样品门。DXH500则没有此项功能。 选择手持条码阅读器扫描质控条码,或选择 🚺 进行

手工输入。输入后选择《到确认。

混匀质控,然后将质控品放入样品台(DXH520)或开盖 后将吸样针置于质控容器内,选择 № 或触碰测试开 关进行测试。吸样完成后,取下质控,或弹出样品门 后取出质控。

质控超限

如果质控超限,被认为Out, Sample Analysis – Patient Results 样品分析-患者结果屏幕出现 图标,结果使用红色显示。 出现质控超限,应查找原因重测质控。 如果接受超出范围的结果并删除错误指示符,请选择

 ✓ 一 ✓ ,接受所有QC/EQC输出条件。接受的结果 以蓝色显示。

查看质控文件

点击 [1],从下拉列表选择Lot #批号,查看质控文件信息。

查看质控图

查看<u>质</u>控运行详情

点击 [™]选择CD(CBC+DIFF)或CBC模式,点击 [♥] 确认。

混匀样品,将样品试管放入样品台或将样品针置于试 管液面内。点击 [●] 或触碰测试开关进行样品分析。 吸样完成后,取下试管,或弹出样品门后取出试管。 测试结果显示后,可以选择 [●] ● [●] 或 ●传送或打 印结果。

创建工作列表

使用LIS下载工作列表,或手工输入工作列表,将患者样品加入工作列表。

样品分析仪,DXH520的样品门会自动打开,点击 ♀ 会自动关闭并进行测试。不要手工关闭样品门,系统 不会识别并进行采样测试。只能按 ♀ ⑥,然后重 新进入测试界面,重新运行标本程序,打开样品门。

运行标本

选择 ,如果没有存在工作列表,则DXH520会自动 打开样品门,如果存在工作列表,则会出现提示消息, 点击 @确认, DXH520会打开样品门。 使用手工或手持条码扫描仪输入样品ID,如果不输入 样品ID,则自动分配样品ID。

UGGG Beckman Coulter DXH系列培训 DXH500/520 结构操作维护故障篇 3 DXH500/520 主要操作

3.4 数据查看

PLT直方图

旗标

旗	标和位置	1	44.74
1	2	3	抽坯
Е			手动编辑主要参数
е			自动编辑计算参数
+			结果高于分析测量范围上限
-			结果低于分析测量范围下限
	R		审核结果
	*		血红蛋白和血细胞比容(H&H)检查失败 (HCT - 3)<(HGB * 3)<(HCT + 3)
		н	•患者结果高于动作限制 •控制结果高于预期范围
		L	•患者结果低于活动限制 •控制结果低于预期范围
		h	患者结果高于参考区间,但小于活动限制(H)
		I	患者结果低于参考区间,但小于活动限制(L)

代码	描述
	表决总数(破折号)。 计数期间的数据不一致。
••••	计算不完整(点)。 无法导出数据。
+++++	高于工作范围(加号)
?????	结果超出了可以格式化显示的值范围(问号)

编号	阈值	大约体积fl
1	小PLT	2.0
2	CP1	5.0
3	CP2	18.0
4	Р	27
5	小RBC	28.0
6	CP3	32.0
7	大 PLT/CP3-2	34.0

编号	旗标区域	信息
1	大型未成熟细胞	大细胞
2	MN(单核细胞/中性粒细胞)	MO / NE重叠
3	LM (淋巴细胞/单核细胞)	LY / MO重叠
4	NE(中性粒细胞/嗜酸性粒 细胞)	NE / EO重叠
5	NL(中性粒细胞/淋巴细胞)	NE / LY重叠
6	LLYM(下淋巴细胞)	细胞干扰
7	碎片	碎片

消息	参数/旗标	描述	Low Diff Events低分类事	Diff% R. Diff# R	散点图总细胞数小于500。
BA Interference BA 干扰	Diff% R, Diff# R	 た法计算BA。 BA和BA#出现非数字结果 ()。 对于单核细胞,中性粒细胞和淋 巴细胞区域(NL,LM,MN),多个群重叠。 申 请CD(CBC+DIFE)时,此消息会出现异常Diff 	件 LY/MO Overlap重叠	Diff% R, Diff# R	淋巴细胞和单核细胞群在LY / MO阈值区域重叠。 申请CD时,此消息会出现异常Diff。 单核细胞和中性粒细胞群在MO / NE阈值区域中重
Background Failed空白 生啦	所有结果 R	空白失败后处理的标本。	MO/NE Overlap 重叠	Diff% R, Diff# R	平仅知愿和于日枢知愿研仁MO / NE阈值区域千重 叠。 申请CD时,此消息会出现异常Diff。 由性粒细胞和淋巴细胞群在NE / IV阈值区域重叠
八败 Cellular Interference细胞 王壮	WBC R, Diff% R, Diff# R_PLT R	WBC群之间的分离差,淋巴细胞区域以下的干扰。 由责CD(CBC+DIFE)时,此消息会中现异常Diff	NE/LY Overlap 重叠	Diff% R, Diff# R	中位短细胞和淋巴细胞种化化/ EIQ 值区域重值 申请CD时,此消息会出现异常Diff。 中性粒细胞和嗜酸性粒细胞群在NE / FO阈值区域
□ ル Daily Checks Failed每日 检查生啦	所有结果 R	每日检查后处理的标本失败。	NE/EO Overlap 重叠 Optical Adjust Epiled 光	Diff% R, Diff# R	重叠。 申请CD时,此消息会出现异常Diff。
回旦八败 Debris碎片	无	碎片区域的事件太多。	学调整失败	Diff% , Diff#	光学LED调整失败(超出范围27,500±3%)
Dimorphic RBC RBC双峰	RDW R, RDW-SD R	存在至少两个红细胞群的证据。	Optical LED Mean Error	WBC , Diff%	四业库立历生土工户改造四生
Expired Cleaner 清洗剂 过期	所有结果 R	用过期的清洗剂处理的标本。	光学LED均值错误	, DIΠ# 	吸尤度半均值小于定义的限值。
Expired Diluent 稀释液过 期	所有结果 R	用过期的稀释液处理的标本。	Optical LED Value Error 光学LED值错误	WBC	至少一个计数周期的吸光度值低于默认限制。
Expired Lyse 溶血剂过期	所有结果 R	用过期的溶血剂处理的标本。	PLT1:Debris 碎片	PLT R, MPV R	干扰较小的血小板。 PLT直方图左侧的干扰在通
H&H Check Failed H&H 检查失败	HGB *, HCT *, MCH *, MCHC *, RDW *, RDW-SD *	HGB与HCT的比率不在预期范围内。	PLT2:Debris 碎片	PLT R, MPV R	但UNICP1阈值之间。 干扰较大的血小板。 干扰位于CP2和P阈值之间的 PLT直方图的右侧。
	HGB , HCT , MCH		PLT3:PLT/RBC Overlap 重叠	PLT R, MPV R	PLT和RBC群体在CP3和CP3-2阈值之间重叠。
HGB Blank Error HGB空 白错误	, MCHC , RDW , RDW-SD	HGB空白读数超出内部阈值限制。	PLT Carryover 交叉污染	PLT R, MPV R	基于前一样品的PLT值和预期的PLT残留百分比, 估计的PLT残留可能显着影响当前样品的PLT结果。 重复试样运行。
HGB Out of Range Error HGB超范围错误	HGB, HCT, MCH*, MCHC*, RWD*, RDW-SD*	HGB计算不在内部范围内。	RBC Aggregates 聚集	RBC R, MCH R, RDW R, RDW-SD R	MCH, RDW和RDW-SD都超过阈值限制 (MCH> 37.0 pg, RDW> 27.0%, RDW-SD> 70.0 fL) 。
Instrument Temperature Out of Range 仪器温度超	所有结果 R	当仪器温度不符合规格时处理的样品。	Suspect Diff 疑似分群	无	模式与正常差异不同。 当存在异常Diff时,出现 可疑Diff。
出范围			WBC/Diff Carryover 交叉	WBC R, Diff% R,	基于前一样品的WBC值和预期的WBC遗留百分比, 估计的WPC 建 图 是可能且差影响 当前样 日的WPC 结
Large Cells 大细胞	Diff% R, Diff# R	大型未成熟细胞区域中的大量事件。 申请CD时, 此消息会出现异常Diff。	污染	Diff# R	而且的WDU週笛里可能並有影响目前杆面的WBU箔 果。

决定	消息	描述
Anemia	贫血	低 RBC 和/或 低 HGB
Anisocytosis	红细胞大小不均	高 RDW
Basophilia	嗜碱性	高 BA 和/或 #
Eosinophilia	嗜酸性细胞增多	高 EO 和/或 #
Erythrocytosis	红细胞增多症	高 RBC
Hypochromia	低色素	低 MCH
Large Platelets	大血小板	高 MPV
Leukocytosis	白细胞增多	高 WBC
Leukopenia	白细胞减少症	低 WBC
Lymphocytosis	淋巴细胞增多	高 LY 和/或 #
Lymphopenia	淋巴细胞减少	低 LY 和/或 #
Macrocytosis	大红细胞症	高 MCV
Microcytosis	小红细胞	低 MCV
Monocytosis	单核细胞增多	高 MO 和/或 #
Neutropenia	中性粒细胞减少	低 NE 和/或 #
Neutrophilia	中性粒细胞增多	高 NE 和/或 #
Small Platelets	小血小板	低 MPV
Thrombocytopenia	血小板减少	低 PLT
Thrombocytosis	血小板增多	高 PLT

查看患者结果

选择🕝,选择相应的图标 💽 ,CBC,WBC DIFF,

RBC PLT, 查看患者结果。

搜索图标 显示结果 重测 编辑 未匹配结果

删除

୳ଡ଼ଡ଼ଡ଼

3.5 工作列表 设置测试申请

选择 🗾 ,选择空白行,点击 🖭 ,进入添加测试 申请屏幕。

字段	描述
标本ID	分配给标本的识别号
患者ID	分配给患者的识别号码
姓	病人的姓氏
名字	病人的名字
出生日期	患者的出生日期(输入出生日期自动计算年龄)
年龄	病人的年龄;还可以选择年龄的度量单位
性别	患者的性别
收集日期/时间	标本采集的日期和时间
旗标设置	按年龄和性别使用的标记类型(输入年龄或出生日期,性别,自
	动选择旗标集)
医师	申请医生的名字
地点	测试的位置
测试	测试类型(CD或CBC)
样品	标本类型
评论	关于此申请的评论

输入完成后,点击 🕜 确认,选择 🖸 返回并查看申 请单。

编辑测试申请

选择 💽 ,选择申请单行,点击 🕢 ,进入编辑测试申请屏幕。编辑后,点击 🕥 确认。

删除申请单

选择 「,选择要删除的申请单行,点击 , 弹 窗中选择Selected Order选择申请单或All Orders所 有申请单。点击 ② 确认。

匹配标本ID(SID)

选择 3. 选择 3. 显示未匹配结果,选择患者结果, 点击 3. 选择工作列表中对应的申请单。如果工作 列表不存在申请单,可以手工添加。

点击 🕢 确认。

UGGG Beckman Coulter DXH系列培训 DXH500/520 结构操作维护故障篇 3 DXH500/520 主要操作

3.6 关机

UGGG

主菜单选择 **③**,选择 **④**,从"关闭"对话框中, 选择以下选项之一:

•Power Instrument Down After Shutdown关闭后关闭电源仪器 - 此选项使仪器执行关闭, 然后关闭电源。

•Perform Daily Checks After Shutdown关机后执行 每日检查 - 此选项将仪器置于清洁器中30分钟,再 加上"附加清洁时间"和"每日检查"中指示的持续 时间。

使用键盘指示清洗剂中的额外时间(0分钟到5小时), 关闭周期超过30分钟。 选择,点击,开始执行关机。 3.7 设置

可选择自动注销时间,当系统停止动作超过这个时间 时,自动注销出现登录界面。

Beckman Coulter DXH系列培训 DXH500/520 结构操作维护故障篇 3 DXH500/520 主要操作

<u>3.7.3 设置日期时间</u>

● 「○」可以选择设置日期和时间格式,设置日期和时间。设置完成后,点击 ◎ 确认。

3.7.4 设置自动开机、每日检查和自动清洗循环频率 ● ● ,选择自动开机的时间,每日检查的时间,自 当清洗循环(25-50个测试),设置完成后,点击 ◎ 确认。

3.7.5 设置下一个标本 → ,选择下一个标本是开放进样还是封闭进样, 测试方式是CD(CBC+DIFF)还是CBC。设置完成后, 点击 ② 确认。

3.7.6 设置打印机选项

S→ ●
 ●
 ●
 ●
 ④
 ④
 ④
 ④
 ④
 毎
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●</

First Name: [EFQ] Last Name: DAUTON Run Date/film: 03/16/2016 13:02 Date of Birth: 0.1/01/1978 E Age: 38 Year(s) Location: Old 03/16/2016 11:00 Sequence #: 36761 Nome:	Specime Patient	n ID: ID:	123				Test: Gender:	CBC M	Specimen: E	WB	
Run Date /Time: 0.91/6/2015 11:00 Sequence #: 0.81 E. Sequence #: 3.67 E. Sequence #: MARY AVERS Test Result Image: All of the sequence #: MARY AVERS Test Result Image: All of the sequence #: MARY AVERS Test Result Image: All of the sequence #: MARY AVERS Test Result Image: All of the sequence #: MARY AVERS Test Result Image: All of the sequence #: Mary AVERS Test Market #: Mary AVERS Mary AVERS Test Jain 1:00 1:00 1:00 1:00 Market #: Mary AVERS Mary AVERS Mary AVERS Test #: Jain 1:00 Jain 1:00 Jain 1:00 Jain 1:00 Market 3:5.7 g/d/d 1:2.1 1:6.2 Jain 1:00 Jain 1:00 Row 1:1.7 If %: 1:2.1 1:6.2 Jain 1:00 Jain 1:00 Jain 1:00 Row 1:1.7 If %: 1:2.1 1:6.2 Jain 1:00 Jain 1:00 Jain 1:00 Row 1:1.7 If %: 1:2.1 1:6.2 Jai	irst Nai	ne:	JEFF	Q			Last Name:	DALTON			
$ \frac{\overline{rest}}{rsc} \frac{\overline{result}}{rsc} \frac{\overline{result}$	Run Dato Collectio Location	e/Time: on:):	03/3 03/3 ICU	16/2016 1 16/2016 1	3:02 1:00		Date of Birth: Sequence #: Physician:	01/01/1978 36761 MARY AYERS	E Age:	38 Year(s)	
$\frac{1}{100} \frac{1}{100} \frac{1}$	Test	Result	Flags	Units	Low	High					
$\frac{1}{10} \frac{1}{10} \frac$	WBC			x10 ³ /uL	2.00	10.20					
IncI	RBC	0.96	1	x104/uL	2.00	5.63					
$\frac{\mathbf{k} \cdot \mathbf{r}}{\mathbf{k} \cdot \mathbf{k}} \frac{\mathbf{k} \cdot \mathbf{k}}{\mathbf{k} \cdot \mathbf{k}} \frac{\mathbf{k}}{\mathbf{k} \cdot$	HGB	3.00	L	g/dL	12.00	17.00					
$\frac{\mathbf{k} \mathbf{k}}{\mathbf{k} \mathbf{k}} \frac{\mathbf{k}}{\mathbf{k} \mathbf{k}} \frac{\mathbf{k}}{\mathbf{k} \mathbf{k}} \frac{\mathbf{k}}{\mathbf{k} \mathbf{k}} \frac{\mathbf{k}}{\mathbf{k} \mathbf{k} \mathbf{k}} \frac{\mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k}}{\mathbf{k} \mathbf{k} \mathbf{k} k$	нст	8.4	L	%	36.7	47.1					
Image 31.3 pg 23.9 33.4 MCHC 35.7 g/dL 32.5 36.1 ROW 11.7 I % 12.1 16.2 ROWSD 33.4 I ft 36.5 46.0 PUT 9.02 R ft 7.40 11.40	MCV	87.8		fL	73.0	96.2					
$\frac{1}{100} \frac{1}{117} \frac{1}{10} \frac{9}{10} \frac{1}{12.1} \frac{1}{16.2} \frac{3}{16.2} \frac{1}{10.2} \frac{1}$	MCH	31.3		pq	23.9	33.4					
$\frac{11.7}{1000} + \frac{11.7}{1000000000000000000000000000000000000$	MCHC	35.7		g/dL	32.5	36.1					
$\frac{RDV + 5D}{PT} \frac{3.3.4}{PT} \frac{1}{PT} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	RDW	11.7	1	%	12.1	16.2					
$\frac{\textbf{Price}}{\textbf{NPV}} \underbrace{\begin{array}{c c c c c c c c c c c c c c c c c c c$	RDW-SD	33.4	1	fL	36.5	46.0					
$\frac{1}{10000000000000000000000000000000000$	DIT	5.9	RL	x10³/µL	152.4	347.9					
$\frac{1}{10000000000000000000000000000000000$											
Diluent 0007170 05/13/2016 Lyse 8300002 05/02/2016 Cleaner 8310001 06/12/2016 Control 371607413 03/16/2016 08:58 Calibration 491607600 03/03/2016 15:07	MPV	9.02	R	fL	7.40	11.40					
Diluent 0007170 05/13/2016 Lyse 8300002 05/02/2016 Cleaner 8310001 06/12/2016 Control 371607413 03/16/2016 08:58 Calibration 491607600 03/03/2016 15:07 BAVEN Printed 10/20/201617:40 AW090008 res3676	MPV	9.02	R	fL	7.40	11.40	RBC	PLT			
Lyse 8300002 05/02/2016 Cleaner 8310001 06/12/2016 Control 371607413 03/16/2016 08:58 Calibration 491607600 03/03/2016 15:07 SAVEN Printed 10/20/2016 17:40 AW090008 res3676	MPV	9.02	R	fL.	7.40	11.40	RBC	PLT	20 fL		
Cleaner 8310001 06/12/2016 Control 371607413 03/16/2016 08:58 Calibration 491607600 03/03/2016 15:07 RAVEN Printed 10/20/2016 17:40 AW090008 res3676	MDV	9.02	R	ft.	7.40	11.40	RBC	PLT	205/13/2016		
Control 371607413 03/16/2016 08:58 Calibration 491607600 03/03/2016 15:07	MPV	9.02	R	ft.	7.40	11.40	RBC	PLT 2 28 20 2 0007170 8300002	05/13/2016 05/02/2016		
Calibration 491607600 03/03/2016 15:07	MPV	9.02	R	ft.	7.40	11.40	RBC 28 100 150 200 M	PLT 2 10 20 0007170 8300002 8310001	05/13/2016 05/02/2016 06/12/2016		
RAVEN Printed 10/20/2016 17:40 AW090008 res3676	MPV	9.02	R	ft.	7.40	11.40	RBC 28 100 150 200 M	PLT 2 28 20 2 28 20	05/13/2016 05/02/2016 06/12/2016 3 03/16/2016	08:58	
	MPV	9.02	R	ft.	7.40	11.40	Billuent Diluent Lyse Cleaner Control Calibration	PLT 2 18 28 2 18 2 18 28 2 18 28 2 18 28 2 18 28 2	05/13/2016 05/02/2016 06/12/2016 3 03/16/2016 0 03/03/2016	08:58	

	n ID:	4335	5			Tes	t:		CD	S	pecimen:	WB	
Patient ID: First Name:		4333			Gender:			M E					
		JEFF				Las	st Name		DALTON				
ın Dat	e/Time:	09/0	01/2016 1	8:09		Dat	te of Bir	th:	01/01/19	70 E A	ie:	46 Year(s))
llectio	on:	09/	01/2016 1	6:47		Sec	quence	#:	5821				
catio	n:	ICU				Phy	, ysician:		MARY AYE	RS			
mmer	nts:												
Test	Result	Flags	Units	Low	High	Test	Result	Flags	Units	Low	High	Flags & Messa	ag
WBC	10.18		x10³/µL	3.60	10.20	RBC	4.75		x10 ⁶ /µL	4.06	5.63		-
LY	25.81		%	15.20	43.30	HGB	13.92		g/dL	12.50	16.30		
мо	6.77		%	5.50	13.70	нст	41.1		%	36.7	47.1		
NE	65.37		%	43.50	73.50	MCV	86.5		fL	73.0	96.2		
EO	1.93		%	0.80	8.10	мсн	29.3		pg	23.9	33.4		
BA	0.12	1	%	0.20	1.50	мснс	33.9		g/dL	32.5	36.1		
L¥#	2.63		x10³/µL	1.00	3.20	RDW	13.5		%	12.1	16.2		
MO#	0.69		x10³/µL	0.30	1.10	RDW-SD	40.7		fL	36.5	46.0		
NE#	6.65		x10³/µL	1.70	7.60	PLT	314.5		x10³/µL	152.4	347.9		
EO#	0.20		x10³/µL	0.00	0.50	MPV	9.53		fL	7.40	11.40		
BA #	0.01		x10³/µL	0.00	0.10	1					<u> </u>		
	1,142,414			20 100	150 200	fL	2	10	20 30	fL			
	rophils		Metamye	locyte		NR	BC	Mic	rocytosis	_	Commen	t:	_
Neut			Mye	locyte		Anisocytos	sis	Mac	rocytosis				
Neut Segr	nented								Other	_			
Neut Segr	Band	_	Promye	locyte _		Poikilocytos	sis						
Ne ut Segr	Band hocyte	_	Promye	Blast	P	olychromas	sis						
Neut Segr Lymp Mo	Band hocyte nocyte	_	Promyel Ab.I	Blast Jymph	Р Ну	Polkilocytos olychromas pochromas	sis sia sia						_
Neut Segr Lymp Mo Eos	Band Band hocyte nocyte sinophil	_	Promyel Ab.I	Blast ymph Other	Р Ну	Poikilocytos olychromas pochromas	sis sia sia			Re	viewed by	,	_
Neut Segr Lymp Mo Eos	Band Band hocyte nocyte sinophil	_	Promyel Ab.I	Blast Jymph Other	Р Ну	Poikilocytos olychromas pochromas	sis sia sia			Re	eviewed by	,	
Neut Segr Lymp Mo Eos	Band Band hocyte nocyte sinophil	_	Promyel Ab.I	Blast Blast Lymph Other	P Hy	Poikilocytos olychromas pochromas	sis sia sia Dilu	ent	000913	Re 70	10/11/20	016	
Neut Segr Lymp Mo Eos	Band bhocyte nocyte sinophil		Promyel Ab.I	Blast Jymph Other	Р Ну	Poikilocytos olychromas pochromas	sis sia sia Dilu	ent yse	00091	Re 70 03	10/11/20 10/22/20	016	
Neut Segr Lymp Mo Eos	Band bhocyte nocyte sinophil		Promyel Ab.I	Blast _ Lymph _ Other _	Р Ну	Poikilocytos olychromas pochromas	sis sia Dilu Clea	ent yse ner	00091 830000 831000	Re 70 03 01	10/11/20 10/22/20 09/17/20	016 016 016 016	
Neut Segr Lymp Mo Eos	Band Band hocyte nocyte sinophil		Promyel Ab.I	locyte Blast Lymph Other	P Hy 	Poikilocytos olychromas pochromas	sis sia Dilu Clea Con Calibrat	ent yse ner trol	00091 830000 831000 371609 491600	Re 70 03 01 0332 3250	10/11/20 10/22/20 09/17/20 09/01/20)16)16)16)16 17:16)16 17:10	
Neut Segr Lymp Mo Eos	Band Band hocyte nocyte sinophil		Promyel Ab.I	locyte _ Blast _ Lymph _ Other _	P Hy	Poikilocytos olychromas pochromas	sis sia sia Dilu Clea Con Calibra	ent yse ner trol	00091 830000 831000 371609 491608	Re 70 03 01 0332 3250	10/11/20 10/22/20 09/17/20 09/01/20 09/01/20	016 016 016 016 17:16 016 17:10	
Neut Segr Lymp Mo Eos	Band Band hocyte nocyte sinophil	Printe	Promyel Ab.1	locyte _ Blast _ Lymph _ Other _	P Hy	Poikilocytos olychromas pochromas	sis sia sia Dilu t Clea Con Calibrat	ent yse ner trol tion	00091 830000 831000 371609 491608	Re 70 03 01 0332 3250	10/11/20 10/22/20 09/17/20 09/01/20 09/01/20	016 016 016 016 17:16 116 17:10	582

DxH 520 Building	SN: AY04 1 - LAB 1	40057 2-K05		C	LINICAL A	SURANCE				
Specime Patient	n ID: ID:	25				Test: Gender:	CD F	Specimen: E	PD	
Run Dat Collection Location Commer	me: e/Time: on: n: nts:	06/2 06/2 ICU	17/2016 1 17/2016 1	.6:57 .6:00		Last Name: Date of Birth: Sequence #: Physician:	01/01/1980 4558 DR. ROSS	E Age:	36 Yea	ar(s) e
Test	Result	Flags	Units	Low	High	Flags &	Messages		Neutrophil	s
WBC	5.12	riags	x103/ul	3.60	10.20	- Indgo d	liessages	-	Segmenter	4
119	34.16		96	15.20	43.30			11-	Ban	4
MO	8.77		96	5.50	13.70			11-	Lymphocyte	
NE	46.41		96	43.50	73.50			11-	Monocyte	
50	10.44	h	96	43.50	8 10			11-	Eosinoph	e il
20	0.22		70	0.00	1.50			11-	Bacaph	
17.4	1.75		70 ×103/ul	1.00	3.20				Matamualocuto	
10#	0.45	<u> </u>	×103/ul	0.20	1.10			11-	Myelocyte	•
MO#	0.45	<u> </u>	×103/µL	1.70	7.60			11-	Bromuplocity	
NE#	2.30	h	×103/µL	1.70	7.00			11-	Promyelocyc	*
EO#	0.53	"	x10-/µL	0.00	0.50			11-	Ab Jump	
BA#	0.01	<u> </u>	x10-/µL	0.00	0.10			11-	AD. Lympi	n
RBC	4.10	<u> </u>	XI0°/µL	4.06	5.63			11-	Othe	r
HGB	12.93		g/aL	12.50	16.30				NKB	
нст	37.6		%	36.7	47.1	18. N. W. W.			Anisocytosi	s
MCV	91.8		fL	73.0	96.2	Sec. Marchenes			Poikilocytosi	s
мсн	31.5		pg	23.9	33.4				Polychromasia	a
MCHC	34.4		g/dL	32.5	36.1			F	Hypochromasia	a
RDW	13.1		%	12.1	16.2			F	Microcytosi	s
RDW-SD	41.8		fL	36.5	46.0			L	Macrocytosi	s
PLT	246.8		x10³/µL	152.4	347.9				Othe	r
MPV	8.80		n.	7.40	11.40	RBC	2 10 - 20	j jo fL	Reviewed b	У
						Diluent Lyse Cleaner	0007170 8300002 8310001	08/15/2 07/22/2 09/14/2	016 016 016	
						Control	35160761	1 06/17/2	016 09:	48
						Calibration	49160790	0 06/03/2	016 11:	:04
raven		Printe	d 10/20/20	16 17:15		AW090008				res4558.0

3.7.8 设置参考区间

🕤 👷 ,设置新的性别年龄参考区间,或选择已有 的参考区间,点击 🕗编辑。设置完成后,点击 🐼 确认。

- 3.7.9 设置决定消息
- 选择以下选项之一:
- •None无 不触发确定消息

•Reference Range Limits参考范围限制 - 指定在参 数值超出参考范围时触发的适用的确定消息 •Action Range Limits操作活动范围限制 - 指定在 参数值超出操作范围时触发的适用的确定消息 设置完成后,点击 🐼 确认。

3.7.10 设置LIS

🔊 – 🖃– 🌌 ,设置通讯参数。设置完成后,点击 🐼 确认。

可以设置以太网或串行通讯,设置是否自动传送结果, 设置是否传送散点图和直方图。

3.7.11 执行备份或恢复 🔊 – 💹,选择🕄 备份,或选择 🔍恢复,完成后点 击③确认。

3.7.12 软件升级 🕲 - 📷 ,插入升级U盘,点击🕝 确认。 **9**, 查看软件版本。

3.7.13 耗材/供应 |耗材/供应余量充足图标

●耗材/供应剩余10个测试周期

●耗材/供应余量不足,无法继续测试,必须更换。

3.7.14 设置/更换耗材

👞 ,使用手持条码扫描仪扫描耗材条码标签 或手工输入耗材信息。

- 容器编号
- 2 验证码
- 3 批号
- 4 失效日期

设置/更换完成后,点击 🕥 确认。更换完成后,选 择Prime reagent(s)灌注试剂。灌注完成后,执行本 底空白测试。

3.7.15 检查循环计数器

"循环计数器"屏幕包含有关仪器处理的分析 (WB和 PD)数量,仪器,QA和诊断循环的信息。对于跟踪 目的以及在需要清洁或更换程序时对齐循环计数非常 有用。

查看循环计数。

3.7.16 设置/编辑质控品

🔊 - 💫,点击 汩 添加质控品,使用手持条码扫描 仪输入质控信息,或点击 🔛 使用屏幕键盘输入。

点击 🧼 编辑质控品。选择Auto Transmit自动传送 或Auto Print自动打印,设置完成后,点击 (2)确认。

3.7.17 设置/更换废液容器

|废液容器超过80%, 🌑 废液容器超过90%。

- 3.7.20 设置单位
 - [15], 设置单位后,点击 📝确认。

3.7.21 设置XB

 ▶→ 承,选择Enable XB,使用屏幕键盘设置参数, 或使用 ➡ 恢复默认值,选择报警通知选项,选择报 告选项,点击 ✔ 确认。

<u>3.7.22</u> 设置XM

▶ - X, 选择 → 设置参数详情,使用屏幕键盘输入CBC或DIFF参数,点击 ♥ 确认。选择Enable CBC或Enable DIFF,点击 ♥ 确认。

3.7.23 设置扩展质控

●-些,选择Enable Extended QC 启用扩展质控。
 使用屏幕键盘输入错误范围。选择质控报告格式,选择报警通知选项,选择 認 设置参数标签信息,点击
 ○ 确认。

- •参与者编号
- •实验室编号
- •仪器IQAP ID
- •仪器编号 点击 **②**确认。

4 DXH500/520 质量保证

4.1 设置校准

重要事项在校准仪器之前,请确保以下事项:

•仪器正常运行,维护,针和微孔在校准前是干净的。

•仪器有足够的试剂量来完成校准程序。如果校准过程中试剂耗尽,则必须重新开始并执行完整校准。 •每日检查通过。

 ● - ● → 进入校准屏幕,如果存在原有数据,可以选择Print calibration before deleting打印校 准之后删除,或者点击 ● 显示校准屏幕不删除数据。

点击 🕥 确认删除数据。

选择 🔊 使用手持条码扫描仪或使用屏幕键盘输入校准品信息(批号、有效期、来源和靶值)。

必要时选择 ● ● 删除现有的校准信息。

确认输入信息准确无误,点击 ☑确认,样品门自动 打开(DXH520),混匀校准品,插入样品座,点击 ☑ 自动关闭样品门,开始校准品测试,测试完成后,样 品门自动打开,取下校准品。结果显示在屏幕上。这 个过程重复多次。

选择Excl列的复选框,在多次重复测试中(一般N=10) 去掉偏离测试点,使用剩下的测试点进行计算。

UGGG Beckman Coulter DXH系列培训 DXH500/520 结构操作维护故障篇 4 DXH500/520 质量保证

查看校准结果:屏幕显示统计信息并指示仪器是否需 要校准或其他操作。 Mean 均值; % CV 变异系数; Target 靶值/参考值; Factor % Diff DIFF%系数: Factor % Diff DIFF%系数: In Use Cal Factor)-1] × 100 Factor % Diff DIFF%系数: In Use Cal Factor Delta Diff DIFF差值:= |(均值-参考值)| In-Use Factors 使用系数:当前校准系数,默认1.0 New Factor 新系数: New Cal Factor Mean Status 状态: 哪些测试点用于校准计算。

如果发生校准超限,则使用颜色标记,校准失败。 点击 🕑 编辑复选框,点击 凸取消复选。

参数	精度(CV%)	可接受的校准系数	DIFF%范围	DIFF差值范围
WBC	≤ 3.0%	0.5 或 ≤ 1.5	> 2.2 和 ≤ 6.6	> 0.20 和 ≤ 0.6
RBC	≤ 2.0%	0.5 或 ≤ 1.5	> 2.3 和 ≤ 4.1	> 0.07 和 < 0.170
HGB	≤ 1.5%	0.5 或 ≤ 1.5	> 1.4 和 ≤ 3.8	> 0.20 和 ≤ 0.5
MCV	≤ 1.0%	0.5 或 ≤ 1.5	> 2.1 和 ≤ 3.2	> 2.0 和 ≤ 3.0
PLT	≤ 5.0%	0.5 或 ≤ 1.5	> 4.8 和 ≤ 9.6	> 12.0 和 ≤ 23.0
MPV	≤ 3.0%	0.5 或 ≤ 1.5	> 8.0 和 ≤ 21.0	> 0.7 和 ≤ 2.0

4.2 运行重复性

确保从单个供体获得足够的正常全血(正常WBC, RBC 和PLT值)至少十个周期。

将全血样品分成三个试管。

注:封闭样品不能穿孔超过四次。当处理开放的全血样品时,不需要将血液分成三个管。

点击 🕜 确认,或选择 🙆 不删除直接显示重复性屏幕。点击 🖻 删除当前文件并运行新的重复性。

混匀样品,样品门自动打开(DXH520),插入样品座, 点击 [●] 自动关闭样品门,开始重复性测试,测试完 成后,样品门自动打开,取下样品。结果显示在屏幕 上。需要重复测试10次,如果选择闭管,则每个试管 最多重复四次。

显示并查看重复性数据:

N: 测试次数; Mean: 均值; 2SD: SD = √∑(x-x)² % CV: 变异系数; Minimum: 最小值; Maximum: 最大值; Range: 最大最小值的差值范围 确认%CV和SD符合重复性范围。 可以选择打印重复性报告。 4.3 运行交叉污染

准备一个全血试管,三个稀释液试管。 稀释液分配选择 → DILUENT DISPENSE稀释液分配。 将空试管放入试管座,点击 → 确认。重复三次,制

作三个稀释液试管。

测试完成后,结果出现在屏幕上,交叉污染是否通过 也会显示,使用公式自动进行计算: %Carryover=(L1-L3) % Carryover和本底空白必须符合范围。 可以选择打印交叉污染测试报告。

UGGG Beckman Coulter DXH系列培训 DXH500/520 结构操作维护故障篇 4 DXH500/520 质量保证

5 DXH500/520 清洗程序

5.1 清洁仪器

使用经批准用于实验室的消毒湿巾清洁仪器的外表面。 为防止干燥的血液或试剂沉积物堆积,请及时清理溢 出物。 全天检查吸样针区域。 使用消毒湿巾清除血 液沉积物。

5.2 清洗计数池

使用清洗剂反冲RBC和WBC微孔,然后排空并重新填充稀释液。

选择 N- Clean Baths 清洗计数池,等待仪器完成 清洗循环,完成后LED指示灯变为绿色。

5.3 执行漂白剂循环

准备3.6%的漂白剂: 查看市售的漂白剂浓度标签, 利 用公式计算加入去离子水量: (市售浓度/3.6%)-1。 按照公式计算,按比例混合,准备待用。 选择 -BLEACH CYCLE漂白剂循环,仪器开始准备。 当提示加入去离子水时,用螺丝刀打开右侧门,在 WBC和RBC计数池内倒入6m1去离子水。点击 🗹 确认。 关闭右侧门,选择 🖉 系统自动进行去离子水清洗流 程。 当提示加入漂白剂时,用螺丝刀打开右侧门,在WBC 和RBC计数池内倒入4ml漂白剂。点击 🖉 确认。 关闭右侧门,选择 🐼 系统自动进行去漂白剂清洗流 程。

当提示加入去离子水时,用螺丝刀打开右侧门,在 WBC和RBC计数池内倒入6ml去离子水。点击 ④ 确认。 关闭右侧门,选择 ④ 系统自动进行去离子水清洗流 程。

执行关机,执行开机,执行每日检查。

5.4 清洗WBC池过滤器

➤ -Drain Baths排空计数池,负压和废液注射器,当 电源按钮LED显示绿色时,按住电源开关几秒钟,关 闭电源。出现提示关机时间时,点击 ②。

拔掉电源线,使用螺丝刀打开右侧门,必要时将门从 铰链上取下。擦拭WBC池下可能存在的液体,抓住WBC 池底部的卡舌左推使其顺时针转动,将底部的槽与螺 丝对齐。

将WBC池底部下拉,从WBC池中分离。

使用去离子水冲洗过滤器,不要擦拭,以免损坏。如 果存在堵塞附着,可以用漂白剂长时间浸泡,必要时 更换。

WBC池底部装回WBC池,抓住卡舌使两个槽对齐螺丝, 上推底部,确认螺丝通过底部。将卡舌右推,使其逆 时针转动,并完全固定。

接入电源线,打开电源开关,登录软件点击 ② 取消 执行每日检查。运行计数池清洗循环,执行每日检查, 确认每日检查通过。

UGGO

5.5 清洁管座及管座外壳

取下管座,使用消毒湿巾清洁管座,清除干燥的血液 或附着物。使用去离子水和棉签擦拭管座内部和外壳, 干燥后装回管座。

5.6 计数池排空

▶ -DRAIN BATHS 排空计数池,等候排空结束,LED 指示灯变为绿色。

5.7 反冲微孔

使用清洗剂反冲微孔,排空后使用稀释液填充。 > BACKFLUSH APERTURES反冲微孔,等候反冲结束, LED指示灯变为绿色。

5.8 清洁条码阅读器

使用湿润的无绒软布擦拭条码阅读器光窗,光窗不防水,不能使用酒精或磨损类物质擦拭。

6 DXH500/520 更换调整程序

6.1 更换冲洗套0型圈

按照更换吸样针中的说明卸下吸样针。请勿颠倒冲洗 套,以免意外丢失0形圈。

拧下黑色针导套并将其从冲洗套上拆下。将吸样针插 入冲洗套内的0形圈中,然后从冲洗套上取下吸样针。 0形圈应该与针一起出来。

取下旧的0型圈,注意不要丢失透明的或白色的垫片。 吸样针装入黑色针导套,将新的0型圈插入吸样针, 将黑色导套拧回冲洗套,验证吸样针定位,更换0型 圈结束。

Beckman Coulter DXH系列培训

DXH500/520 结构操作维护故障篇 6 DXH500/520 更换调整程序

6.2 更换吸样针

UGGG

➤ -Drain Baths排空计数池,负压和废液注射器,当 电源按钮LED显示绿色时,按住电源开关几秒钟,关 闭电源。出现提示关机时间时,点击

拔掉电源线,使用螺丝刀打开右侧门,必要时将门从 铰链上取下。

确认吸样针完全缩回。将吸样针摇臂组件向后移动以接触吸样针。

拉动吸样针顶部将其从托架中取出。向下推并拉动冲 洗套,将其从摇臂上取下。拉起吸样针将其从冲洗套 上取下。

断开吸样针与管道的连接,然后将其从仪器上取下。 使用钳子的尖端向上推动管道。不要挤压管道。

根据实验室规定丢弃吸样针。从包装中取出新的吸样 针。将管道重新连接到新吸样针的顶部,并确保管道 正确连接到吸样针上。请小心使用钳子以避免挤压管 道。

小心地将吸样针推入冲洗套。将冲洗套推入摇臂。将 吸样针顶部推入托架。向前移动吸样针摇臂组件。 安装右侧门并将其固定。将电源线重新连接到仪器背 面。按住电源按钮几秒钟,打开仪器电源。仪器软 件将启动。 登录软件点击 ③ 取消执行每日检查。运行Diluter Reset初始化稀释器,执行每日检查,确认每日检查 通过。吸样针摇臂电机和上/下吸样针电机可能不在 初始位置。

选择 🚮 确认针定位,选择 📬,使用屏幕键盘输入 样品ID为000,确认选择CP模式,点击 🕥确认,样 品门自动打开。

将空的带有管帽的试管插入样品台,点击 **?**〕样品门自动关闭,等候穿刺结束,样品门自动打开,取下空试管,确认管帽穿刺孔位于管帽橡胶的中心位置,否则需要进行定位调整。

6.3 更换管座

选择 🚮,样品门打开,抓住管座抽出,插入新的管座,将其插入到位。

Beckman Coulter DXH系列培训 DXH500/520 结构操作维护故障篇 6 DXH500/520 更换调整程序

7 DXH500/520 故障排除

71 一般故障排除

描述	可能原因	动作	05	U
电源不能打开	电源线松动或未牢固连接到插座 或仪器。	1. 关闭电源。 2. 确保电源线牢固地连接到仪器和插座。 3. 打开电源。		
	ON / OFF按钮不良	尝试修复或更换		
	仪器故障	检查电源部分和电路部分	73	看日志
初始通电时摩擦噪音	运输过程中组件可能已松动。 点击没有复位。	1. 关闭电源。 2. 打开右侧门。 3. 寻找任何松脱的材料或组件并作出必要 的处理。 4. 打开电源。] 所有
屏幕很暗。 电源按钮 亮。	显示不良或连接器松动	检查连接器,必要时更换显示器		〕可追
没有吸样,测试没有 开始	程序不在Sample Analysis - Patient Result样品分析−患者结 果屏幕	进入Sample Analysis - Patient Result样 品分析−患者结果屏幕	3 2	
吸样后样品从吸样针 滴落	液体从吸样针内部滴落	吸样路径有泄漏。 1.打开右侧门。 2.检查吸样针或冲洗套上是否有松动的管 道。] 报警
	组件故障			
WBC / Diff,RBC和/	试剂管道未正确连接。	确认试剂管道已牢固连接到试剂瓶上的正 确位置。		计错误
以PLI 超过背景限制。	仪器未正确灌注。	从耗材屏幕执行灌注功能。		
は存足间況下, TIGD 背景也可能很高	稀释液污染。	更换稀释液,从耗材屏幕执行灌注稀释液。		
	计数池污染。	执行计数池清洗,执行每日检查。必要时 执行漂白剂清洗。) 母日
WBC, RBC和/或PLT低 或无结果	WBC或RBC微孔可能堵塞。	执行反冲,执行计数池清洗,执行每日检 查,必要时执行漂白剂清洗。		〕耗材
DIFF参数不正确或没 有结果	WBC微孔可能堵塞。	执行反冲,执行计数池清洗,执行每日检 查,必要时执行漂白剂清洗。		
所有参数显示代码	样品分析模式错误(WB/PD)	1.在显示结果屏幕上验证样品分析模式。 2.以正确的模式重复分析。		t to wante the total
<u>heee </u>	eckman Coulter DXH务	《列培训 DXH500/520 结构	I操作维护	故障篇

7.2 确认软件版本

7 DXH500/520 故障排除

7.3 查看日志

30

7.4 质量保证故障排除

7.5 诊断屏幕

程序	原因	动作
质控	参数超出预期结果。	按照质控规则查找超限原因
校准	●%CV ●% Diff 系数 ● Diff差值	分析故障原因,解决并重新校准
重复性	> % CV 限制	 确保已执行定期维护程序。 使用规范中指出的范围内的样品。 检查异常值。 重复测试。
交叉污染	>Carryover % 限制	•使用新的稀释液。 •重复残留测试。

HARDWARE RESET-硬件重置 Clean Baths-清洗计数池 Backflush Apertures-反冲微孔 Bleach Cycle-漂白剂循环 Diluter Reset-稀释器重置 Check Sensors-检查传感器 Service-维修 Drain Baths-排空计数池 Rinse Baths (Rinse Cycle)-冲洗计数池 (冲洗循环) Prepare to Ship 运输准备 ▶ -PREPARE TO SHIP, ❷确认,提示加入去离子水 时,打开右侧门,在两个计数池加入6m1去离子水, 点击 🕥 确认。关闭右侧门,点击 🕥 确认开始执行 去离子水重新流程。 提示加入漂白剂时,打开右侧门,在两个计数池加入 4m1漂白剂水,点击 🕢 确认。关闭右侧门,点击 🕢 确认开始执行漂白剂重新流程。 提示加入去离子水时,打开右侧门,在两个计数池加 入6m1去离子水,点击 @ 确认。关闭右侧门,点击 @ 确认开始执行去离子水重新流程。 提示将试剂吸液管放入550m1去离子水时,点击 🖾 确 认,此时仪器不会使用去离子水。 提示从去离子水中取出吸液管时,将吸液管取出放置 在无菌处。点击 ③确认,准备完成,系统关闭电源。

Diluent Dispense-稀释液分配 Park Syringe-注射器停车 Valve Checks-电磁阀检查

UGGG Beckman Coulter DXH系列培训 DXH500/520 结构操作维护故障篇 7 DXH500/520 故障排除

Lubrication Pos. (Syringe Assembly Piston Lubrication)润滑位置 (注射器组件活塞润滑) 将注射器移动到适当位置以润滑注射器组件活塞。 活塞润滑应每年进行一次。

▶ -LUBRICATION POS, 注射器活塞下降, 打开右侧 门, 手指上取少量润滑脂, 在四个白色活塞周围均匀 涂抹润滑脂。

润滑完成,关闭右侧门。选择 🖉 确认润换完成。

7.6	
事件	
信息	

事件信息		原因/后果	动作
Bath Drain Error	计数池排空错误	原因: 在分析循环期间,在计数池排水期间发生 负压故障。 后果: 发生紧急停止。	 1. 从诊断屏幕执行稀释器重置。 2. 执行清洁WBC计数池过滤器。 在清洁过程中,验 证计数池过滤器完整性。 3. 必要时更换计数池过滤器。
Bleach Cycle done. Perform Shutdown and Daily Checks.	漂白循环完成。 执行关机和每 日检查。	原因:尝试在漂白循环后运行未经授权的循环。 结果:周期被拒绝。	 如果适用,从诊断屏幕执行稀释器重置。 执行关机和每日检查。
Bleach Cycle Interrupted	漂白循环中断	原因: 漂白循环中断。 例如,操作员启动了紧急停止,操作员启动了电 源关闭,交流线路电压(电源故障)等。 结果:事件日志中的新条目	1.从诊断屏幕执行稀释器重置。 2.重新启动漂白循环。
Cannot analyze specimens because the reagent temperature is out of range	由于试剂温度超出范围,无法 分析样品	原因: 试剂温度<目标 − 2.5°C。 结果: 运行样本不可访问,并且禁用了探测功能 样品无法处理。	等待5分钟。 从诊断屏幕执行稀释器重置。
Count Vacuum Error	计数负压错误	原因: 在分析循环的计数阶段发生负压故障或在 计数负压期间负压稳定性检查失败。 后果: 发生紧急停止。	从诊断屏幕执行稀释器重置。
Diluter Door Opened	稀释器门打开	原因:循环过程中稀释器门打开或未正确关闭或稀释器门关闭互锁开关可能无法正常工作。 结果:拒绝或停止循环。	 1.关闭稀释器门。 从诊断屏幕执行稀释器重置。 2.从诊断屏幕执行检查传感器。 如果门关闭,请确保屏幕的稀释器门部分有复选标记。
HGB LED Adjustment Failed	HGB LED调整失败	原因: HGB LED调整失败 结果: 血红蛋白结果无效。	 1. 从诊断屏幕执行稀释器重置。 2. 如果在每日检查期间发生故障,请重复每日检查如果再次出现故障,请从诊断屏幕执行漂白循环。
Instrument Temperature Out of Range	仪器温度超出范围	原因: 仪器温度<18°C或>34.5°C 结果: 允许运行样本。 所有结果都标有R.	确保实验室温度在仪器操作温度规范范围内。
Invalid Tube Holder	无效的管座	原因: 管座类型无效 结果: 没有处理循环	1. 确保使用正确的管座。 2. 重新安装管座。
Maximum Reagent Temperature Reached. Heating Stopped	达到最大试剂温度。 加热停止	原因: 试剂温度> 60° C 结果: 运行样本无法访问。 样品无法处理。	1.关闭仪器电源。 等15分钟。 打开仪器电源并登录。从诊断屏幕执行稀释器重置
No Bleach in Bath	计数池中没有漂白剂	原因: 在漂白循环中检测到空气或在计数池中没 有漂白剂。 后果: 发生紧急停止。	 1. 从诊断屏幕执行稀释器重置。 2. 重新启动漂白循环,确保在出现提示时将漂白剂 添加到计数池中。
No Deionized Water in Bath	计数池中没有去离子水	原因: 计数池中没有去离子水。 后果: 发生紧急停止。	 1. 从诊断屏幕执行稀释器重置。 2. 重新启动漂白循环,并在出现提示时确保将去离 子水添加到计数池中。
No Diluent	无稀释液	原因: 在计数池排空开始时发生负压故障: 没有 稀释液。 后果: 发生紧急停止。	 1.确保仪器背面的稀释液吸液管没有受到挤压或阻 塞。 确保稀释液没有用完。 2.从诊断屏幕执行稀释器重置。

	1		
No Tube Holder Available	无管座可用	原因:分析过程中未找到管座。 结果:没有处理循环	确保管座正确就位。
Probe Home Error	针复位错误	原因:复位失败。 针电机。 后果:发生紧急停止。	从诊断屏幕执行稀释器重置。
Probe Home Position Not Found. Perform a Diluter Reset Cycle. Do Not Attempt to Open the Sample Trap Door.	未找到针初始位置。 执行稀释器 重置循环。 不要尝试打开样品门。	原因: 在处理过程中未找到针的出始位置。 后果: 发生紧急停止。	1.不要试图打开样品门。 2.从诊断屏幕执行稀释器重置。
Probe Mechanism Home Error	针机构复位错误	原因:复位失败。 针机构电机。 后果:发生紧急停止。	从诊断屏幕执行稀释器重置。
Probe Mechanism Home Position Not Found	针机构初始位置没有找到	原因: 找不到初始位置。 针机构电机。 后果: 发生紧急停止。	从诊断屏幕执行稀释器重置。
Probe Mechanism Move Error	针机构移动错误	原因:步进丢失。 针机构电机。 后果:发生紧急停止。	从诊断屏幕执行稀释器重置。
Probe Move Error	针移动错误	原因: 步进丢失。 针电机。 后果: 发生紧急停止。	从诊断屏幕执行稀释器重置。
Reagent Heating is Stopped	试剂加热停止	原因:试剂加热为100%,2分钟内没有温度升高 (0.5℃增加)。 结果:试剂加热失败,运行样品无法进入。 样品无 法处理。	关闭仪器电源。 等15分钟。 打开电源并登录。从诊断屏幕执行稀释器重置。
Rinse cycle not done	冲洗循环没有完成	原因: 计数池中无稀释液。 结果: 不会启动循环	 1. 从诊断屏幕执行冲洗计数池(冲洗循环)。 2. 如果冲洗计数池无法解决问题,请从诊断屏幕执行稀释器重置。
Sample trap door error occurred while closing	关闭时发生样品门错误	原因:样品门在处理过程中没有到达关闭位置。 结果:不会启动循环。	 从试管座上取下样品。 确保将来的样品完全插入管座中进行处理。
Sample trap door error occurred while opening	打开时发生样品门错误	原因:样品门在处理过程中没有到达打开位置。 结果:不会启动循环。	1.从试管座上取下样品。 2.确保将来的样品完全插入管座中进行处理。
Sample Trap Door Home Error	样品门复位错误	原因:复位失败。样品门电机。 后果:发生紧急停止。	从诊断屏幕执行稀释器重置。
Sample Trap Door Home Position Not Found	未找到样品门初始位置	原因: 找不到初始位置。 样品门电机。 后果: 发生紧急停止。	从诊断屏幕执行稀释器重置。
Sample Trap Door Move Error	样品门移动错误	原因: 步进丢失。 样品门电机。 后果: 发生紧急停止。	从诊断屏幕执行稀释器重置。
Shear Valve Home Error	旋转阀复位错误	原因:复位失败。旋转阀电机。 后果:发生紧急停止。	从诊断屏幕执行稀释器重置。
Shear Valve Home Position Not Found	未找到旋转阀初始位置	原因: 找不到初始位置。 旋转阀电机。 后果: 发生紧急停止。	从诊断屏幕执行稀释器重置。
Shear Valve Move Error	旋转阀移动错误	原因:步进丢失。 旋转阀电机。 后果:发生紧急停止。	从诊断屏幕执行稀释器重置。

→ Beckman Coulter DXH系列培训

DXH500/520 结构操作维护故障篇 7 DXH500/520 故障排除

Syringe Home Error	注射器复位错误	原因: 复位失败。注射器电机。 后果: 发生紧急停止。	从诊断屏幕执行稀释器重置。
Syringe Home Position Not Found	未找到注射器初始位置	原因: 找不到初始位置。 注射器电机。 后果: 发生紧急停止。	从诊断屏幕执行稀释器重置。
Syringe Move Error	注射器移动错误	原因: 步进丢失。 注射器电机。 后果: 发生紧急停止。	从诊断屏幕执行稀释器重置。
Syringe Vacuum Error	注射器负压错误	原因: 在测试注射器循环期间发生负压故障或在注射 器负压期间负压稳定性检查失败。 后果: 发生紧急停止。	, 从诊断屏幕执行稀释器重置。
System Busy	系统忙	原因:通过先前的循环处理启动循环。 结果:无法启动循环。	等待循环完成。
System Timed Out	系统超时	原因: x秒内未发生用户操作。 后果: 循环中止	从诊断屏幕执行稀释器重置。
Vacuum Pump Error	负压泵错误	原因: 泵上的负压不足。 后果: 发生紧急停止。	从诊断屏幕执行稀释器重置。
VL X Error (X = a valve number from 1 to 12)	VL X错误 (X =从1到12的阀号)	原因: 阀指令失败−阀 X. 后果: 紧急停止发生。	从诊断屏幕执行稀释器重置。
Waste Drain Error	废液排空错误	原因: 在从注射器排出废液时, 在测试注射器循环期间发生压力故障。 后果: 发生紧急停止。	1. 确保仪器背面的废液管没有受到挤压或阻塞。 2. 从诊断屏幕执行稀释器重置。

点击播放演示

yeec维修网

yeec维修网QQ群

yeec维修网淘宝店铺

yeec维修网站长QQ

yeec维修网微信公众号

yeec维修网站长微信

Beckman Coulter DXH系列培训 DXH500/520 结构操作维护故障篇

本讲义归属权为原作者,由<u>http://www.yeec.com</u>压缩整理,未经许可不得传播或用于商业用途

